If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=18t^2+9t
We move all terms to the left:
0-(18t^2+9t)=0
We add all the numbers together, and all the variables
-(18t^2+9t)=0
We get rid of parentheses
-18t^2-9t=0
a = -18; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·(-18)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*-18}=\frac{0}{-36} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*-18}=\frac{18}{-36} =-1/2 $
| 5w+10-18=12 | | (8x+14)=(9x-4) | | 12-2d=16 | | 5+x0.65=10+x0.45 | | 2-(x+3)=2x+4 | | 4(x-3)=6x+12-2x | | 8+-2n=14 | | 3x+2(x-10)=4x-20 | | (-9+x)/7=-7 | | 1.2x=10.2 | | (x-9)/2=2 | | 25+26x=-1 | | 90+(3x+22)+(4x-2)=180 | | 19(200/y)+40y=5165 | | 21+26x=-1 | | 19(200/y)+40y=200 | | 41+x/35=41 | | 90+(5x+10)+(3x+40)=180 | | 2v+-4=-18 | | 50+8a=90 | | 50+8a=180 | | -1+2u=-11 | | 2b+4+3b+1=90 | | 14=3.5y | | 13=p+310 | | 7a(3a+5)=0 | | m-1.8=7.2 | | 5u-7=17 | | 10x+8=2x-166 | | -9+12d=15 | | Y=348-24x | | 4y-8y-6=90 |